首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121917篇
  免费   4864篇
  国内免费   2245篇
电工技术   3176篇
技术理论   3篇
综合类   4920篇
化学工业   17596篇
金属工艺   6876篇
机械仪表   5395篇
建筑科学   5071篇
矿业工程   1687篇
能源动力   2178篇
轻工业   6098篇
水利工程   2023篇
石油天然气   2786篇
武器工业   380篇
无线电   13957篇
一般工业技术   20720篇
冶金工业   4316篇
原子能技术   651篇
自动化技术   31193篇
  2024年   94篇
  2023年   785篇
  2022年   1313篇
  2021年   1958篇
  2020年   1484篇
  2019年   1115篇
  2018年   15577篇
  2017年   14617篇
  2016年   11016篇
  2015年   2241篇
  2014年   2349篇
  2013年   2578篇
  2012年   5822篇
  2011年   12258篇
  2010年   10806篇
  2009年   7657篇
  2008年   9036篇
  2007年   9787篇
  2006年   2113篇
  2005年   2938篇
  2004年   2242篇
  2003年   2119篇
  2002年   1450篇
  2001年   891篇
  2000年   963篇
  1999年   1002篇
  1998年   798篇
  1997年   618篇
  1996年   595篇
  1995年   474篇
  1994年   398篇
  1993年   266篇
  1992年   243篇
  1991年   194篇
  1990年   127篇
  1989年   97篇
  1988年   91篇
  1987年   49篇
  1986年   44篇
  1985年   36篇
  1968年   45篇
  1967年   34篇
  1966年   44篇
  1965年   44篇
  1959年   38篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Thermoelectric TiNiSn-based half Heusler compound reveals high Seebeck coefficient and electrical conductivity, leading to high power factor. As a consequence of the solidification path, TiNiSn single phase cannot be obtained directly from the liquid phase. Thus, a long annealing step is needed to homogenize the alloy. In this work, we present a new processing route for half Heusler compound formation, combining arc melting of pure elements, rapid solidification of the molten alloy and sintering. Rapid solidification of the molten alloy allows to obtain almost single TiNiSn phase, limiting the formation of the primary TiNi2Sn phase as a consequence of the deep undercooling of the liquid. The rapidly solidified alloy was ground to powder and sintered by open die pressing. As-sintered samples show a density around 95% of the theoretical value. Thermal cycling of the sintered samples shows evolution of the phases, suggesting that after sintering the sample is not in equilibrium yet. After the second thermal cycle thermoelectric properties become reproducible, indicating the attainment of the equilibrium. In conclusion, the proposed processing route allows to obtain dense TiNiSn in bulk form avoiding the time-consuming annealing step, typically used to homogenize this alloy after solidification.  相似文献   
992.
In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.  相似文献   
993.
Zirconium alloys are advanced materials with properties that are greatly affected by their crystalline structure. To investigate this, sheets of Zr-1Sn-0.3Nb alloy were hot rolled with different reductions (10%, 30%, 50%, and 60%) at 1023 K and 1073 K to investigate the alloy’s dynamic recrystallization behavior. Recrystallization kinetics was observed via electron backscattering diffraction and transmission electron microscopy, and the results were compared with estimates based on the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation. The values of the JMAK exponent n and k increased with the rolling temperature. The estimates and microstructural observations of dynamic recrystallization (DRX) kinetics were in good agreement.  相似文献   
994.
The Kroll process has been employed for titanium extraction since the 1950s. It is a labour and energy intensive multi-step semi-batch process. The post-extraction processes for making the raw titanium into alloys and products are also excessive, including multiple remelting steps. Invented in the late 1990s, the Fray-Farthing-Chen (FFC) Cambridge process extracts titanium from solid oxides at lower energy consumption via electrochemical reduction in molten salts. Its ability to produce alloys and powders, while retaining the cathode shape also promises energy and material efficient manufacturing. Focusing on titanium and its alloys, this article reviews the recent development of the FFC-Cambridge process in two aspects, (1) resource and process sustainability and (2) advanced post-extraction processing.  相似文献   
995.
To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.  相似文献   
996.
This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp3 content. The phenomenon of solid–liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp3 content of DLC thin films was modeled based on perturbation theory.  相似文献   
997.
The Au-catalyzed core–shell silicon nanowires (Si-NWs) were synthesized by chemical vapor deposition by using SiH4 and H2 precursor gases. The TEM and FTIR studies revealed that the Si-NWs consist of core silicon surrounded by a thick oxide sheath and Au distributed at the a-SiOx/Si interface. The x-ray photoelectron spectroscopy (XPS) was used to study the chemical composition and electronic environments of gold silicide in the a-SiO x /Si-NWs. The elemental analysis and chemical network of gold silicide of core–shell Si-NWs were explained on the basis of the random atomic distribution of Si, O and Au atoms. The Raman spectra and XRD peak reveal the crystalline core of Si-NWs. The individual contribution to the Au (4d) core orbital was deconvoluted to Au-Si-Au, Au-Si-O, Au-Au, Au-O-Au, Au-O-Si and Au=O/Au-O2 bonding structure. The analysis shows that the O linked with Si and Au has also contributed to growth of Si-NWs.  相似文献   
998.
Laser welding–brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.  相似文献   
999.
Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of ~ 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle–ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.  相似文献   
1000.
In the present work, we studied the microstructure, phase constitution, and corrosion performance of Al88Pd12, Al77Pd23, Al72Pd28, and Al67Pd33 alloys (metal concentrations are given in at.%). The alloys were prepared by repeated arc melting of Al and Pd granules in argon atmosphere. The as-solidified samples were further annealed at 700 °C for 500 h. The microstructure and phase constitution of the as-solidified and as-annealed alloys were studied by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The alloys were found to consist of (Al), ε n (~ Al3Pd), and δ (Al3Pd2) in various fractions. The corrosion testing of the alloys was performed in aqueous NaCl (0.6 M) using a standard 3-electrode cell monitored by potentiostat. The corrosion current densities and corrosion potentials were determined by Tafel extrapolation. The corrosion potentials of the alloys were found between ? 763 and ? 841 mV versus Ag/AgCl. An active alloy dissolution has been observed, and it has been found that (Al) was excavated, whereas Al in ε n was de-alloyed. The effects of bulk chemical composition, phase occurrence and microstructure on the corrosion behavior are evaluated. The local nobilities of ε n and δ are discussed. Finally, the conclusions about the alloy’s corrosion resistance in saline solutions are provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号